OZ9AAR 2024-11-06

4 x 23 elements, 5.7 meter booms/8.2WL

-OZ9AAR 2024-11-06

Contents

Introduction
Measurement methods
Measurements on my IC-9700
Measurement of MDS (+3 dB above noise floor)
Calculation of Noise Factor from MDS
Measurements without connection to antennas
Int preamp off, radio terminated in 50 ohms
Int preamp on, radio terminated in 50 ohms
Int preamp off, ext. preamp on, (50 ohm termination instead of antenna)
Int preamp on, ext. preamp on, (50 ohm termination instead of antenna)
Measurements of "cold sky"
Cold spot (Az 267, El 81), Int preamp off, ext. preamp on7
cold spot (72 207, El 01), int picamp on, ext. picamp on
Cold spot (Az 267, El 81), Int preamp on, ext. preamp on
Cold spot (Az 267, El 81), Int preamp on, ext. preamp on7
Cold spot (Az 267, El 81), Int preamp on, ext. preamp on
Cold spot (Az 267, El 81), Int preamp on, ext. preamp on
Cold spot (Az 267, El 81), Int preamp on, ext. preamp on. 7 IC-9700 Noise Figure. 8 RX performance calculator in EMECalc. 9 Measurements of sun noise. 11
Cold spot (Az 267, El 81), Int preamp on, ext. preamp on.7IC-9700 Noise Figure.8RX performance calculator in EMECalc.9Measurements of sun noise.11Sun (SFI 233) 2024-09-04 14:25 UTC11
Cold spot (Az 267, El 81), Int preamp on, ext. preamp on.7IC-9700 Noise Figure.8RX performance calculator in EMECalc.9Measurements of sun noise.11Sun (SFI 233) 2024-09-04 14:25 UTC.11Internal preamp off.11Internal preamp on.11Lack of LNA gain.12
Cold spot (Az 267, El 81), Int preamp on, ext. preamp on.7IC-9700 Noise Figure.8RX performance calculator in EMECalc.9Measurements of sun noise.11Sun (SFI 233) 2024-09-04 14:25 UTC.11Internal preamp off.11Internal preamp on.11
Cold spot (Az 267, El 81), Int preamp on, ext. preamp on.7IC-9700 Noise Figure.8RX performance calculator in EMECalc.9Measurements of sun noise.11Sun (SFI 233) 2024-09-04 14:25 UTC.11Internal preamp off.11Internal preamp on.11Lack of LNA gain.12

OZ9AAR 2024-11-06

Introduction

When my new 70 cm EME system was completed, I did some preliminary sun noise measurements and the numbers I got from that did not (initially) match the predicted sun noise levels calculated by the EMECalc program by VK3UM (SK).

On the other hand, I was working stations, both dual and single yagi stations, so it could not be a complete disaster, also Frank NC1I mentioned that he thought my station performed "more or less as it should".

To gain some understanding of what could be wrong/what could be optimized, I did several measurements of the system. The results of these measurements are described in this document. I got A LOT of input from vastly more experienced EME operators, this I am VERY grateful for!).

- 1) The system consists of 4 antennas arranged in a typical "H" frame. The antennas are from the company "Antennas&Amplifiers" (see picture on the first page of this document).
- 2) Each cable from the four antennas has a measured insertion loss of 0.25 dB,
- 3) The antennas are combined using a single "4 to 1" combiner.
- 4) After the combiner (and 30 cm cable), an external preamp (NF 0.8 dB, 20 dB gain) is mounted (also from Antennas&Amplifiers). Later changed preamp to WD5AGO cavity preamp.
- 5) After the preamp, a cable with a loss of approx. 2.5 dB feeds the signal to an ICOM IC-9700 transceiver.

The antennas are each 23 elements (horizontal only), boom length is 5.7 meters, gain is 18.9 dBi, F/B is 40 dB, G/T (Tsky 27K) is +8.22 dB.

Four antennas have an estimated gain of 24.6 dBi / 22.4 dBd.

Further data and description of the system are available at:

https://www.moonbounce.dk/hamradio/ham-radio-current-systems/70cm-eme-system.html

Thanks for input from Frank NC1I, Nic G3YEG, Peter PA2V, Steve W5DOG, Chuck AG7CM, Peter G3LTF, Sam G4DDK, Thomas DL1VPL and many others on the moon-net email reflector!

Measurement methods

Five plus one different method was used to measure levels, "WS": WSJT (echo monitor function), "NM": Noise Meter, "AP": Audio Power, "SV": SpectraVue and a "DMM": DMM6500 (AC voltage, dB reading, Filter on). (Later on, I developed my own program, SimpleCalc, which also is able to measure the noise, results from that falls in line with the other methods shown here)

The sixth method used a step attenuator in the RF path to the radio, this gave in fact a higher sun noise measurement under certain circumstances! More on that later in this document.

For all measurements, the IC-9700 was set to:

- 1) FIL 1 (Bandwidth 3.6 KHz)
- 2) Mode USB-D
- 3) USB LF level = 33% (audio level to PC/soundcard)
- 4) Frequency 432.065 MHz (checked no spurs etc.)
- 5) AGC OFF

All measurements with software were done using the built-in soundcard of the IC-9700.

The DMM6500 multimeter measurements (set to AC, Filter on, readout in dB) were done using the headphone connector on the front of the IC-9700. LF level knob on IC-9700 was kept at a constant level during measurements.

The software used and the version of each:

- WSJT: By K1JT (and others) v2.7.0-rc6
- Noise Meter: By G8KBB v 0.4
- Audio Power: By SV1CAL v 1.0
- SpectraVue: By RFSPACE v 3.44 Beta 0

Generally, the five different measurement methods gave the same result in all cases, there were maybe a couple of 1/10th dB of differences, but these where probably due to the different time of measurement and did not have much (if anything) to do with what type of software/DMM was used. There was an offset between the different (software) methods used, but this was constant and did not change over the measurements.

So basically, I could have used any of the measurement tools/methods.

In the measurements below, I chose to use SpectraVue in continuum mode, this seems to give the most "quiet" and stable reading (using FFT average 20).

OZ9AAR 2024-11-06

Measurements on my IC-9700.

First, I did a couple of measurements on my IC-9700 at 70 cm. I wanted to make sure that it was close to the different reviews out there.

First test was MDS (done at CW, 500 Hz, AGC Mid, ATT, NR, NB, IP+ all off).

With radio terminated in 50 ohms (levels measured on SpectraVue):

Preamp off: -61.6 dB Preamp on: -62.3 dB

Measurement of MDS (+3 dB above noise floor).

Preamp off: -131.9 dBm (0.057uV) Preamp on: -143.1 dBm (0.016 uV) (with SSB SP-70 preamp: 144.6 dBm) (with SSB SP-70 preamp: 144.8 dBm)

Just to get another number to compare with reviews, I measured the level needed for S9 indication:

Preamp off: -87 dBm Preamp on: -95 dBm

Calculation of Noise Factor from MDS.

Using the calculator at: <u>https://owenduffy.net/calc/mds2nf.htm</u> it is possible to calculate the Noise Figure based on the MDS value. If I use -131.9 dBm and -143.1 dBm, I arrive at Noise figures of 15.09 dB and 3.89 dB. (with SSB Electronics SP-70 preamp in line, NF is 2.41 and 2.21 dB).

(doing the same measurements at 1.2 KHz BW yielded MDS of -127.7 and -139.0 dBm / NF 15.5 and 4.2 dB)

These (500 Hz BW) numbers fit perfectly with numbers in the reviews I found online. Especially the one from Adam Farson VA7OJ/AB4OJ, in his review both the MDS and NF are mentioned. Adam measures the MDS to be:

Preamp off: -132 dBm Preamp on: -143 dBm

Which is the same as I measured. This makes me believe that the Noise Figure I use in the following calculations is pretty accurate (**15 dB NF with preamp off, and 4 dB NF with preamp on**).

Table	5: Noise figur	e in dB.
Preamp	Meas. NF dB	NF calc. from MDS dB
off	16	16
on	3	4
off	15	15
on	4	4
off	8	7
on	4	3
	Preamp off on off on off	off 16 on 3 off 15 on 4 off 8

Table 5: Noise figure in dB

Figure 1 From Adam Farson VA7OJ/AB4OJ review

He also measured the Noise Figure separately, and this match the numbers when using MDS to calculate NF.

OZ9AAR 2024-11-06

Measurements without connection to antennas

First, I did four measurements without the antennas connected. I tested with a 50 ohm termination on the input of the external LNA, made two measurements, one with the internal preamp on and one with it off.

Then I connected the 50 ohm termination to the radio (at the output cable on the external LNA), measured again with the internal preamp off and on.

Int preamp off, radio terminated in 50 ohms.

-53.0 dB

Int preamp on, radio terminated in 50 ohms.

-54.3 dB

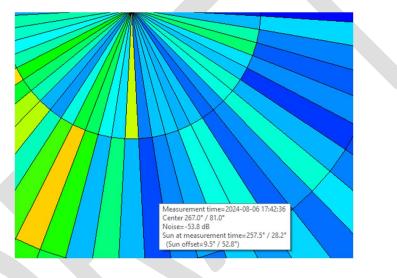
Int preamp off, ext. preamp on, (50 ohm termination instead of antenna). -48.8 dB

Int preamp on, ext. preamp on, (50 ohm termination instead of antenna) -40.1 dB

OZ9AAR 2024-11-06

Measurements of "cold sky".

I tried using Leo as "cold sky", it turns out that sometimes I was able to find an even "colder spot" on the sky, probably because of local noise that would creep into the antennas when pointing to Leo.


Cold spot (Az 267, El 81), Int preamp off, ext. preamp on

-50.7 dB

Cold spot (Az 267, El 81), Int preamp on, ext. preamp on

-43.6 dB

This position fits fine with the scan from my SkyScanner program (note there is approx. a 3 dB (constant) offset between SkyScanner and SpectraVue):

OZ9AAR 2024-11-06

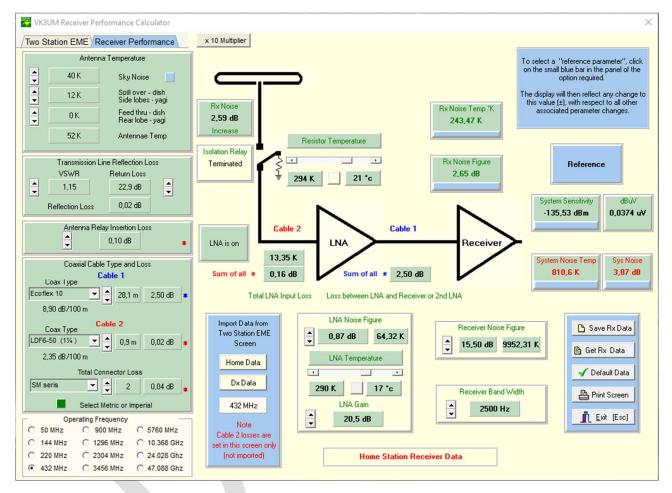
IC-9700 Noise Figure

According to a review (and my own measurements) of the IC-9700 by Adam Farson VA7OJ/AB4OJ, the noise figure of the IC-9700 is:

	Table	5: Noise figu	e in dB.				
Band	Preamp	Meas. NF dB	NF calc. from MDS dB				
144 MHz	off	16	16				
	on	3	4				
432 MHz	off	15	15				
432 11172	on	4	4				
1.2 GHz	off	8	7				
1.2 GHZ	on	4	3				

According to this, the IC-9700 has a Noise Figure of 15 dB with the internal preamp off, and 4 dB with the internal preamp on, in the 70cm band.

Sam, G4DDK also did measurements on the IC-9700 (reviews in Practical Wireless magazine), he measured 15.9 dB with internal preamp off, and 4.8 dB with internal preamp on, so a little higher than Adam Farson measured.



OZ9AAR 2024-11-06

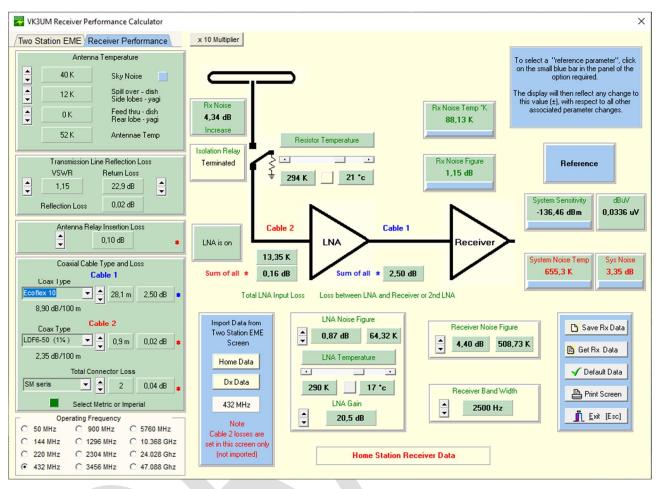
RX performance calculator in EMECalc

When using the "RX performance" tab in EMECalc, it is possible to calculate the effect of connecting a 50 ohm termination to the preamp instead of the antenna (on 70cm, noise is expected to increase with the termination resistor).

I entered the known data, for the NF of the radio, I first chose 15.4 dB as that was in the middle of the two reviews.

According to this, I should see an increase in noise by 2.59 dB when connecting a 50 ohm terminal instead of the antenna to the preamp.

If I compare the "cold sky" value of -50.7 dB (with intern. Preamp off) and the -48.8 dB (with intern. Preamp off) with 50 ohm termination instead of antenna, I arrive at 1.9 dB.


This is 0.69 dB lower than predicted.

This could possibly indicate that "cold sky" is influenced by some (local) noise.

The cable losses and the LNA NF/G I have measured and I'm confident that these are correct.

OZ9AAR 2024-11-06

Next, I switched on the internal preamp of the IC-9700 and changed the **NF in EMECalc to 4.4 dB** (middle of the two reviews).

According to this, I should see an increase in noise by 4.34 dB when connecting a 50 ohm resistor instead of the antenna to the preamp.

If I compare the "cold sky" value of -43.6 (with intern. Preamp on) dB and the -40.1 dB (with intern. Preamp on) with 50 ohm termination instead of antenna, I arrive at 3.5 dB.

This is 0.84 dB lower than predicted.

These two results depend on the quality of the 50 ohm termination, the LNA NF/G and the NF of the IC-9700.

Measurements of sun noise.

A measurement was done using the sun as a noise source. The amount of noise that is being received from the sun depends on several factors. One of them is the "SFI" (Solar Flux Index) at the time the measurement was taken. In this case, the 10.7 cm SFI index is noted at each measurement.

Sun (SFI 233) 2024-09-04 14:25 UTC

Sun was at azimuth 235, elevation 29 (a bit low due to the "late" time of day).

Internal preamp off.

Using SpectraVue, 7.6 dB Using step attenuator, 10.0 dB

Prediction from EMECalc

Tx A (Home	Station) 262,46 c	_	R Carsten 70cms 03 Rx B 2500	w	Diam Mesh	Spacing H-V	Sys Sensitivity	Echo S/N -17.07 dB		Yagi Array 432 M Single Yagi Gain in dBd	Number of Yegis	gл	12,39 ° Beam Width		Fype and Gain er Defined
Frequency	Path Loss	Aqu	i or Leo	· · ·	yagi -		Effective gr 0.30		>	22,45 dBd	. 1	0,00 н	12,39 °	22,45 dBd	24,60 dBi
10.7cm	20,84 K	58,66 K	<	169,69 K	·····›	Gr	nd to Cold Sky >	2,48 dB		Parabolic Reflector Focal length 1,23 m	Feed Type f / D Efficiency	OK1DFC Loop Beam Width	Gain	🗟 Linear Pol.	□ Circular Pol.
233	0,25 dB	0,80 dB	20,0 dB	2,5 dB	15,0 dB	29 K		9,70 dB	>	Dismeter Size 3,00 m Metric	0,41 72,6%		134		
Get sfu	LNA Loss		LNA Gain	Coax Loss	Bx Nf	Antenna Ta		Sun Y 0,00 dB		41,1 Lambda		Noise[hot] Fi		Quiet [cold] Sky	System TK
	x A Output Power		Transmission Los		Power at Fee	d		Moon Y		Home Station Y Fac Noise Source (Hot)	Taurus A	4816 J		40 K	278,19 K
	0 Watts	26,81 dBW	0,8 dE	3 39 Ground Tempera	99 Watts	26,01 dBW	115.144 W	V EIRP	Date	Cassiopeia A	Virgo A Termination	Point So	urce Y Facto	or	0,29 dB
	,19 K = 2,69 er Noise Temperatu			293 K 2			9 K = 2,92 dB Voise Temperature		-	Centaurus A	, criminanos I				

This fits almost perfectly with the predicted sun noise from EMECalc when using the step attenuator.

Internal preamp on.

Using SpectraVue, 10.0 dB Using step attenuator, 10.0 dB

Prediction from EMECalc

Tx A (Home :	-		AR Carsten 70cms 0: Rx E	SW .	Diam Mesh		Sys Sensitivity	Echo S/N		Yagi Array 432 MHz E 12,39 * Array Type and Gain Single Yagi Gain in dBd Number of Yagis G/T Beam Width User Defined
432 MHz requency	262,46 Path Loss d Flux Data is	Aq	K 250 u or Leo	0 Hz	yagi 🗸	selected	 -143,9 dBm Effective gr 0.90 	-13,39 dB	>	22,45 dBd · 1 · 0.00 H 12,39 · 22,45 dBd 24,60 dBi
10.7cm	20,84 K	58,66 K	<	10,67 K -	>	Gn	d to Cold Sky >	4,47 dB		Parabolic Reflector Focil Isrght 123 m Feed Type OKKDPC Loop IF Linear Pol. □ Circetter Pol. Diameter Size // D Efficiency Beam Width Gain Dick Gain
233	0,25 dB	0,80 dB	20,0 dB	2,5 dB	4,0 dB	29 K		13,10 dB	>	3,00 m Metric 0,41 72,6% 16,19° 134 19,12 dBd 21,27 dl
Get sfu	LNA Loss	LNA NI	LNA Gain	Coax Loss	Rx Nf	Antenna Ta		Sun Y	_	41,1 Lambda
		•	•	-		÷		0,01 dB		Home Station Y Factor Calc Noise(hot) Flux Quiet (cold) Sky System TK
	x A Output Power		Transmission Los		Power at Fee			Moon Y		Noise Source (Hot) 4816 Jy 40 K 119,17 K
- 48	0 Watts	26,81 dBW	- 0,8 d		9 Watts	26,01 dBW	115.144 V	VEIRP		Cassiopeia A Virgo A Point Source Y Factor 0,65 dB
	17 K = 1,18 er Noise Temperat			Ground Temperal 293 K 20	ture		K = 1,50 dB		Date	Cygnus A C Termination Centaurus A

In this case we see a rather large difference from the predicted (13.10 dB) to the measured (10.0 dB)

OZ9AAR 2024-11-06

Lack of LNA gain.

When doing calculations in EMECalc, it becomes obvious that the gain of my Preamp (20 dB) is not enough when running without the internal preamp of the IC-9700!

If I do the calculations with a RX NF of 15 dB (IC-9700 internal preamp off), LNA NF of 0.8 and LNA gain of 20 dB, the prediction (SFU 233) for sun noise is 9.7 dB, and my own echoes are predicted at -17.08 dB.

If I then increase the LNA gain from 20 dB to 40 dB, the sun noise increases from 9.7 to 13.42 dB and own echoes are predicted at -13.33 dB.

This is natural as it takes a lot of (extra) gain to overcome the high noise figure of the IC-9700 of 15 dB.

If I reduce the RX NF in EMECalc to 4 dB (as it should be with the internal preamp on), it seems that an LNA with a gain of approx. 30 dB would be a better match for my system.

OZ9AAR 2024-11-06

Preamp from WD5AGO

I ordered a new preamp from Tommy WD5AGO. Tommy makes some very nice preamps for the various bands, he offers them in different configurations, cavity input, helix inputs, single, dual stage etc.

The preamp I ordered was a silver plated cavity dual stage preamp. The first stage of the preamp has an NF of 0.22 dB and the second stage 0.7 dB. The P1out is +12 dBm.

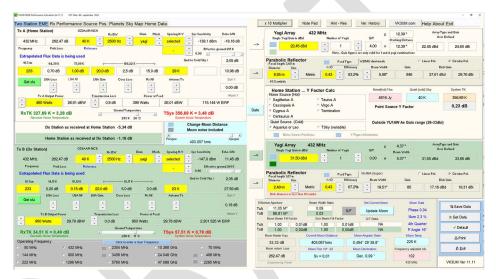
The combination of the two stages gives a total noise figure of 0.27 dB and 37 dB gain.

To this I then need to add the loss of the high power relay in front of the preamp, the CZX3500 relay was measured to have a loss of 0.08 dB. This means that the total loss in front of the preamp is 0.25 (cable loss) + 0.08 (relay) = 0.33 dB in total.

After installing the WD5AGO preamp, my measured sun noise is getting closer to the predicted numbers. The preamp has a higher gain than the previous ones I used (and lower NF), also there are filtering on both the input and output that might help the system.

So far, this setup is what I'm using. The internal preamp of the IC-9700 is off, there were some theories that it somehow has problems with overdrive. I have quite a lot of "out of band" noise sources where I am located.

OZ9AAR 2024-11-06


EMECalc data for OZ9AAR and NC1I

I entered data for both my own station as well as for Frank NC1I massive antennas. I have worked Frank several times and have some data collected from these contacts. Note that the predicted signal strengths by EMECalc is under optimum conditions, correct polarization etc., this might not always be the case!

Home = OZ9AAR (old preamp/diplexer: SSB SP-70 preamp 1 dB NF, 20 dB G, Loss 0.7 dB (diplexer)) DX = NC1I

This was my setup using my "old" preamp (and a diplexer as a filter). According to the data, I should be able to receive frank at around -5 dB (BW 2500 Hz/WSJT). In real life, I have received Frank at -4 dB in WSJT.

Frank should be able to receive me at -1 dB, he has seen me with -3 dB so again close to the predicted values.

The next screenshot is with another new preamp and no diplexer (Ant&Amp preamp NF 0.8 dB, G 20 dB, loss 0.25). The prediction is that I should be able to receive Frank at -4 dB which I have done many times. Frank should (under optimum conditions) be able to see me at close to -1 dB.

	on Calculator Ner 11.11								1				1			1	
	ME Rx Perfor			anets Sky	Map Home E	ata				x 10 Multiplier	Note Pad	Hint - Re	ver Ver	History	VK3UM.com	Help About	Exit
A (Home Si	tation)	OZBAAJ	R-NCI Rel	w	Dism Mosk	Spocing H-V	Sys Sensitivity	Echo SIN		Yagi Array Single Yagi Gale		IHZ Number of Y		ar t	12,39 *	Array Typ- Uper D	
432 MHz	262,47 dB	40 P	250	0 Hz	yagi	selected	-140.2 dBm	-17,08 dB	>			INVINCIAL OF T			tacking Distance		
requescy	Path Loss	Ref	erence				· Effective g				A5 dBd	-	•	4,00 H ly valid for 1 and 4 y	12,39°	22,45 dBd	24,60 dBi
xtrapolated	Flux Data is be	ing used					0.30 ad to Cold Sky >			Parabolic Ref			. 1				
10.7cm	20,84 K	58,66 K	¢	163,631	()		ad to Cold sky >	2,48 dB		FocsI length 3,68 m			Type W2#	NU deal-mode Beam Width	Gain	C Linear Pol.	Circular Pol.
233	0,25 dB	0,80 dB	20,0 dB	2,5 dB	15,0 dB	29 K		11,96 dB	>	Bismeter Sk	- Metric	0.43	63.2%	- 5.68°	946	27.61 dBd	29.76
Get sfu	UNA Loss I	JNA NE	LNA Gain	Coax Loss	ReNI	Astesa To		Sun Y	_	411Lumbda	- Meak	0,43	03,2%	• 0,00	940	27,01 080	29,700
Gersiu			-	-	-			0.00 dB						Noiselhotl Flu		lookti Sky	System TK
Tr	A Ostpet Power	-	Transmission Lo.		Power at Fe			Meen Y		Noise Source (ion Y Fact	or Calc					
		6.81 dBW	· 0.8 d		99 Watts	26.01 dBW	115.144 V	/ EIRP		C Sagittarius A		Taurus A		4816 Jy		40 K	278,19 K
_				Ground Temper	share				Date	 Cassiopela A Cygnus A 		Virgo A Termination		Point Sou	rce Y Factor		0,29 dB
	19 K = 2,69 d	в		293 K 2	L		9 K = 2,92 dB Noise Temperature			Centaurus A		1 citra harori					
							Change Moon Dis	ance		Quiet Source				Outside YU	1AW Ae Gain ra	inge (26-33dbi)	
	Dx Station as	received a	t Home Station	-4,26 dB			Moon noise includ			Aquarius or L		TSky (variable					
	Home Station	as receive	d at Dx Station	-1,18 dB		Peripee		Apogee		Noise Se	purce Positions.		Y Figure Inf	ormotion			
		OZBAAR					403.057 kms			Yagi Arra				ε	4,37 °	ArrayType User D	
x B (Dx Static	on)	013000	RxB	v	Diam Mich	Spacing H-V	Syc Scacitivity	Echo S/N	>	Single Yogi G	sin in dBd	Number of Y	ugio	Q/T	Beam Width	User L	chied
432 MHz	262,47 dB	40 K	250	0 Hz	yagi	selected	-147,0 dBm	11,45 dB		31	,50 dBd	1		0.00 н	4.37 °	31,50 dBd	33,65 dBi
Frequency	Path Loss	But					Effective g 0.90	round 241K									
xtrapolated	Flux Data is be	ing used					Gad to Cold Sky >			Parabolic Ref FocsI knigth 1,07 m			1782	IMA (Super)		🗆 Lincur Pol.	P Circular Pol.
10.7cm	14,15 K	10,19 K	<	10,17 K -	>		Gala to Cela sky s	2.48 dB	>	Diameter Si			Efficiency	Bose Width	Gsie	Dish	
233	0.20 dB	0,15 dB	22.0 dB	5,0 dB	3.0 dB	23 K		27.59 dB	_	2,49 m	Metric	0,43	67,2%	19,51*	85	17,16 dBd	19,31 d
Get stu	LNA Loss	LNA NF	LNA Gain	CosxLoce	Rx NF	Astones To		Sun Y		Dich diameter is le	or than 90 Lambid						
Jee Jru	-	-			-			0.18 dB		tive Aperture 11.05 M ²	Beam V	Adth Ratio	s	et Current Moon	Moon		På Save Dat
т	x B Output Power		Transmission L		Power at Feed			Moon Y	TxA TxB	88,81 M ²	0,0		S/F	Update Moon	Phase		
950	Watts 2	9.78 dBW	* 0.0 dB	3 95	50 Watts	29.78 dBW	2.201.525	VEIRP		Moon Beam Fill Fac		Beem Fill Factor		G/T Ratio	Illum :		B Get Data
				Ground Tempe	ratero				TxA TxB				.01dB	NA NA	4th Qi P Ang		✓ Default
RxTK 34,51 Receiver	1 K = 0,49 dB Noise Temperature			230 K 1	inc on	TSys 57,51 System	K = 0,79 dB Noise Temperature		TAD	Moon Radar Equ.		on Distance		gular Diam	Moon Te		D. Doint
perating Frequ	uency			Click to enter a	a User Frequency					53,33 dB	403.0	67 kms	0,494° 2	9'38,8"	225 K		a Print
50 MHz	• 4	132 MHz	= 2	304 MHz	- 1	0.368 GHz	 70 MH 	z		Moon return Loss	Moon Flu	ox 10 ⁴ -22	Moon Des	lination	Frequency adjust	ed sfu	≜ Ext
144 MHz		00 MHz	III 0 3	456 MHz	- 2	4.048 GHz	🔲 🗧 406 MH	z		262,47 dB	Sv	0,01	Dec. 0	0,09 °	102		
222 MHz	- 11	96 MHz		760 MHz	21.	7 088 GHz	2295 MH			Engineering Panel					432 MHz		VK3UM Ver 11

OZ9AAR 2024-11-06

The last screenshot is with the WD5AGO preamp, NF 0.27, gain 37 dB. With this I should receive Frank at -1.7 dB (this is with reduced power at Frank), with this setup I have seen Frank at -3 dB, again pretty close.

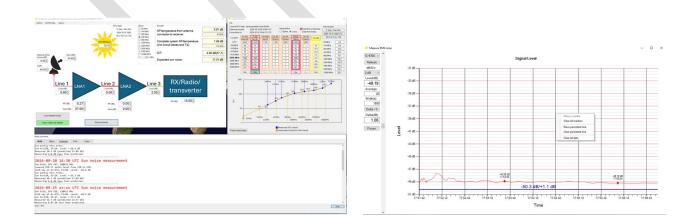
	lation) 0	BAAR 4 dB NF Rodio Rx B	w	Diam Mech	Spacing H-V	Sys Sonsitivity	Echo S/N		Yagi Array Single Yagi Gain		MHz	er of Yaqie	Gr		12,39°		ersy Type or User Defi	
432 MHz	262,74 dB	40 K 250	DHz :	yagi 📜	selected	-145,8 dBm	-11,71 dB				Nuno			384	acking Distance			
Frequency	Path Loco	Reference			1.0		round 255 K		2	2.45 dBd				.00 н	12,39 °	22,45 d	Bd	24,60 dBi
IPS Learmont	th Western Au 2024	Sep 05 0616z									N	ote Gain figure:			ogi combinations			
10.7cm	24,60 K 18,64	к с	3,45 K	>		God to Cold Sky >	5,84 dB		Parabolic Ref Focal length 3,68 m	n		FeedType	W2IMU d			🗆 Linear Po	L P	Circular Pol.
145	0,33 dB 0,27	IB 37,0 dB	2,5 dB	15,0 dB	29 K		13,98 dB	>	Dismotor Si 8,55 m	* Metric	0,43	Efficience 63,25		Sean Width 5,68*	Guin 946	27,	61 dBd	29,76 dBi
Get stu	LNA Lozo UNA NI	LNA Gsis	Coss Loss	Rx NF	Antenno To		Sun Y		41,1Lambda	·		•						
	: :	÷	-	:	:		0,02 dB		Home Stat	ion Y Fa	ctor Calc			Noise[hot] Flux	Quid	et [cold] Sky		System TK
TxA	A Output Power	Transmission Los		Power at Fer	ed		Moon Y		Noise Source (I		C Taurus A			4816 Jy		40 K		75,65 K
480 \	Watts 26,81 d	5W 🗧 0.8 di	3 399	9 Watts	26,01 dBW	115.144 V	VEIRP		Cassiopeia A		C Virgo A	·		Point Sour	ce Y Factor			0.99 dB
	5 K = 0,65 dB Noise Temperature		Bround Temperatu	L .		5 K = 1,01 dB		Date	Cygnus A Centaurus A		 Terminat 	ion		T OIL SOU	ce i racioi			-,
	Dx Station as receiv	ed at Home Station	-1,66 dB			Change Moon Dis Moon noise includ			Quiet Source Aquarius or L		C TSky (va				IAW Ae Gain	range (26-3	3dbi)	
	Home Station as rea	eived at Dx Station	-1,45 dB		Perigee	409.275 kms	Apogee		Noise S	ource Positions.		¥ 19	igure Isforma	tion				
x B (Dx Station	an) 00	3AAB 4 dB NF Radio				409.275 Kms			Yagi Arra	v 432	MHZ				4.37°		ersyType on	d Guin
								-				ar of Yaqia	G/	т Е			Uper Defin	od
432 MHz	262.74 dB	AD K - 2500	- ·	lian Mesh yaqi	Spacing H-V selected	Sys Seasitivity - 147.0 dBm	Echo S/N 8,40 dB	>	Single Yogi G						4,37 Bosm Width 4,37 °	31,50 d		od 33.65 dBi
		Rx B ¹				-147,0 dBm		>	Single Yogi G	isin in dBd	Numb			τī	Bosm Width	31,50 d		
432 MHz Frequency	262.74 dB	40 K 2500 Reference	- ·			-147,0 dBm	8.40 dB	->	Single Yegi G 31 Parabolic Ref	luin in dBd 1.50 dBd flector	Numb	1		т – I .00 н	Bosm Width	31,50 d	Bd	
432 MHz Frequency PS Learmont	262,74 dB Path Lose ath Western Au 2024	40 K 2500 Reference Sep 05 0616z) Hz	yagi 📩		- 147.0 dBm	8,40 dB pround 219 K		Single Yagi G	luin in dBd 1.50 dBd flector	Numb		VE4MA	т – I .00 н	Bosm Width		Bd	33,65 dBi Circular Pol.
432 MHz Frequency PS Learmont 10.7cm	262,74 dB Path Loco ath Western Au 2024 14,15 K 10,19 l	Rx 81 40 K 2500 Reference Sep 05 0616z () Hz 🗼	yagi 🔅	selected	- 147.0 dBm Effective g	8,40 dB pround 219 K 5,84 dB	· >	Single Yugi G 31 Parabolic Ref Focal kngth 1,07 m	luin in dBd 1.50 dBd flector	Numb	1 FeedType	ve4MA (т н .00 н (Super)	Boom Width 4,37 °	← Linear Po	Bd	33,65 dBi Circular Pol.
432 MHz Frequency PS Learmont	262,74 dB Path Lose ath Western Au 2024	Rx 81 40 K 2500 Reference Sep 05 0616z (B 22,0 dB) Hz	yagi 📩		- 147.0 dBm Effective g	8,40 dB pround 219 K		Single Yaqi G 31 Parabolic Ref Focal kogth 1,07 m Diameter Si	lain in dBd 1.50 dBd flector	Numb-	1 Feed Type Efficience	ve4MA (T I .00 H (Super) can Width	Beam Width 4,37 ° Gain	← Linear Po	Bd IL 5 Dish Gui	33,65 dBi Circular Pol.
432 MHz Frequency PS Learmont 10.7cm	262,74 dB Path Loos Ith Western Au 2024 14,15 K 10,19 1 0,20 dB 0,15 d	Rx 81 40 K 2500 Reference Sep 05 0616z (B 22,0 dB	0 Hz	yagi 🔅	selected	- 147.0 dBm Effective g	8,40 dB pround 219 K 5,84 dB 24,08 dB Sun Y	->	Single Yugi G 31 Parabolic Ref Focal longth 107 m Diameter Sk 2,49 m	Information (Information)	Numb-	1 Feed Type Efficiency	• 0) VE4MA1 y Bi	T I .00 H (Super) can Width	Boom Width 4.37° Guin 85	← Linear Po	Bd Dish Gui .16 dBd	33,65 dBi Circular Pol. 19,31 dBi
432 MHz Frequency IPS Learmont 10.7cm 145 Get stu	262.74 dB Path Loos th Western Au 2024 14.15 K 30.15 H 0.20 dB 0.15 A LINA Loos LINA L	A0 K 2500 Reference Sep 05 0616z (B 22.0 dB V LNA Gain	0 Hz .	yagi ÷	selected 23 K Antens Ts	- 147.0 dBm Effective g	8,40 dB prosed 219 K 5,84 dB 24,08 dB Sun Y 0,17 dB	> Effec TxA	Single Yeyl G Parabolic Ref Focal kogith 101 m Diameter Si 2.49 m 41,11 umbde two Aperture 11,05 M ²	Ilein in dBd 1,50 dBd flector 24 Metric Bear	Numb-	1 Feed Type Efficiency	• 0) VE4MA 96 • 96	т н (Super) com Width 19,51°	Boon Width 4,37 ° Guis 85 Moo	□ Linear Po 17,	Bd Dish Gui .16 dBd	33,65 dBi Circular Pol.
432 MHz Frequency IPS Learmont 10.7cm 145 Get stu	262.74 dB Path Loos Ith Western Au 2024 14.55 K 30.19 I 0.20 dB 0.15 d UNA Loos UNA 1 	A0 K 2500 Reference Sep 05 0616z Common B 22.0 dB V LNA Gain Tracenistics L	0 Hz .	yagi , 3.0 dB Rx N , Power at Faced	selected - 23 K Anteens Ts -	- 147,0 dBm - Effective g 0.30 - Gind to Cold Sky>	8,40 dB proved 219 K 5,84 dB 24,06 dB Sun Y 0,17 dB Moon Y	> Effec	Single Yogi G Parabolic Rei Pocal kegith 107 m Diameter 81 2,49 m 41,11ambde two Aperture 11,05 M ² 88,81 M ²	loin in dBd 1,50 dBd Rector	Numb-	1 Feed Type Efficiency 67.25	VE4MA (y Bi % .	т III 00 н (Super) con Width 19,51* arrent Moon late Moon	Boon Width 4,37 ° Guis 85 Moo Phar	r Linear Po 17. n Data	Bd Disk Gui .16 dBd	33,65 dBi Circular Pol. 19,31 dBi
432 MHz Frequency PS Learmont 10.7cm 145 Get stu Tx	262.74 dB Path Loos Ith Western Au 2024 14.15 K 30.15 d 0.20 dB 0.15 d UNA Loos UNA 1 	Ra Bi 40 K 2500 Reference Sep 05 0618z (0 Hz .	yagi 3.0 dB Rx.N/ Power of Faed Watts	selected - 23 K Antenno To	- 147.0 dBm Effective g	8,40 dB proved 219 K 5,84 dB 24,06 dB Sun Y 0,17 dB Moon Y	> Effec TxA TxB TxA	Single Yeyl G Parabolic Ref Focal kogith 101 m Diameter Si 2.49 m 41,11 umbde two Aperture 11,05 M ²	loin in dBd 1,50 dBd Rector	Numb-	1 Feed Type Efficiency 67.25	• 0) VE4MA 96 • 96	(Super) (Super	Boon Width 4.37 ° Guis 85 Moo Phae Illum	r Linear Po 17. n Data se 0,88	Bd Disk Gui .16 dBd	33,65 dBi Circular Pol. 19,31 dBi Save Data
432 MHz Frequency PS Learmont 10.7cm 145 Get stu Tx 500 V RxTK 34.51	282,74 dB Path Loos th Western Au 2024 14,55 90,19 0,20 dB 0,156 LINA Loos LINA Loos E Output Power Watts 26,99 dB	Ra Bi 40 K 2500 Reference Sep 05 0618z (0 Hz 10,11 K 5,0 dB Coax Loss	yagi , 3.0 dB Rx NI Power st Feed Watts	23 K Antena Ta 26.99 dBW	- 147,0 dBm - Effective g 0.30 - Gind to Cold Sky>	8,40 dB proved 219 K 5,84 dB 24,06 dB Sun Y 0,17 dB Moon Y	> Effec TxA TxB TxA TxB	Single Yagi G Parabolic Ref Pocal kogi kuli m Diameter Si 2.49 m 41,11 Limbds htte Aperture 11,05 M ² 88,81 M ² Moon Beam Fill Fac 1,00	Ale in dBd 1.50 dBd Rector 24 Metric Beer 1.50 dBd 0.01 dB 0.00 dB	Numb- + + + + + + + + + + + + + + + + + + +	1 Feed Type Efficiency 67,25 67,25 S/F Factor 0,01dB 0,00dB	• 0) • VE4MA (y B4 96 • • • • • • • • • •	т (Super) cun Width 19,51* arrent Moon late Moon Ratio NA NA	Boon Width 4.37 ° Guis 85 Moo Phan Illum 4th 0 P Ang	r Linear Po 17. n Data se 0,88 12,9 % Duarter gle 316*	Bd Disk Gui .16 dBd	33,65 dBi Circular Pol. 19,31 dB
432 MHz Frequency PS Learmont 10.7cm 145 Get stu Tx 500 V XTK 34,51 Faccover h	282.74 dB Path.loss th Western Au 2024 M,15 K 10,15 G 0.20 dB 0.15 G LIAA Loss K B Ouget Power Watts 26.99 dB I K = 0.49 dB I K = 0.49 dB	Ra Bri Roderasce Roderasce Beg 05 0616z (Control of Control Beg 22,0 dB Beg 10,4 Gals Transmission L W 0,0 dB	0 Hz . 10,11 K 5.0 dB Cosx Loss	yagi ,	selected 23 K Antens Ts 26.99 dBW TSys 57,5	147.0 dBm 147.0 dBm 	8,40 dB proved 219 K 5,84 dB 24,06 dB Sun Y 0,17 dB Moon Y	> Effec TxA TxB TxA TxB	Single Yord G Bracabolic Ref Focal length 101 m Diameter Si 2.49 m 4.11 Lambds the Aperture 11.05 M ² 88,81 M ² Moon Beam Fill Fac 1.00 1.00 Voon Radar Equ	All in a dBd	Numb- - + - + - + - + - + - + - + -	1 Feed Type Efficiency S/F Factor 0,01dB 0,00dB P N	O) VE4MA (VE4MA	T (Super) can Width 19,51* arrent Moon late Moon NA NA NA Chem	Boon Width 4.37 ° Quis 85 Moo Phat Illum 4th P Ang Moon 1	r Linear Po 17. n Data se 0.88 12,9 % Duarter gle 316* Serp	Bd Disk Gui .16 dBd	33,65 dBi Circular Pol. 19,31 dB & Save Data
432 MHz Frequency PS Learmont 10.7cm 145 Get stu Tx 500 V XTK 34,51 Faccover h	282.74 dB Path.loss th Western Au 2024 M,15 K 10,15 G 0.20 dB 0.15 G LIAA Loss K B Ouget Power Watts 26.99 dB I K = 0.49 dB I K = 0.49 dB	Al BK V 2500 Reference B 22.0 dB V UNA Gain V UNA Gain Transmitties L W V 0.0 dB	0 Hz 10,17 K 5,0 dB Coax Loss 5,0 dB Coax Loss 5,0 dB Coax Loss 200 K 17 C Click to set a U	yagi 3.0 dB Rx H Power st Feed Walts sere C Jsee Frequency	selected 23 K Antens Ts 26.99 dBW TSys 57,5	147.0 dBm Effective g 0.50 for d to Cold Sky> 1.158.697 1 K = 0,79 dB	8.40 dB rowed 213 K 5.84 dB 24.08 dB Sun Y 0.17 dB Moon Y W EIRP	> Effec TxA TxB TxB	Single Yayd G Parabolic Rei Pocal kogdi 1,01 m Dianeter 31 2,49 m 411 Lanbol her Aperture 11,05 M ² Moon Beam F F Fac 1,00 Moon Reder Equ 53,46 dB	Alle in a dBd	Numb- 	1 Feed Type Efficiency 67,25 S/F Factor 0,01dB 0,00dB to 0,0	* 0) VE4MA (y B) 96 * Set Cu Upd Gorn Angular 487* 29 1	r (Super) (Sup	Boon Width 4.37 ° Guis 85 Moo Phan Illum 4 th C Phan Illum 4 th C Phan 1225 k	T Linear Po 17. n Data se 0.88 12,9 % Duarter gle 316* Serp K	Bd Disk Gui .16 dBd	33,65 dBi Circular Pol. 19,31 dB Save Data Get Data ✓ Default Print
432 MHz Frequency IPS Learmont 10.7cm 145 Get stu Tx \$500 V RXTK 34,51 Rocever h	262/74 dB Pub.loos th Western Au 2024 14.55 No.13 0.20 dB 0.15 d UALoss LALOSS LALOSS	Re 81 40 K 2500 Add K 2500 B 22.0 dB B 22.0 dB V IMA Gais Transmission L	Hz	yagi 3.0 dB RcN/ Power st Feed Watts ser C Jsee Frequency 11	23 K Antena Ts 26.99 dBW TSys 57,5 System		8.40 dB round 213 K 5.84 dB 24.08 dB Sun Y 0.17 dB Moon Y W EIRP	> Effec TxA TxB TxB	Single Yord G Bracabolic Ref Focal length 101 m Diameter Si 2.49 m 4.11 Lambds the Aperture 11.05 M ² 88,81 M ² Moon Beam Fill Fac 1.00 1.00 Voon Radar Equ	Alle in a dBd 1,50 dBd flector at Metric Bear bor 58 0,01dB 0,00dB Carrent 400 Moco	Numb- - + - + - + - + - + - + - + -	1 Feed Type Efficiency 67.25 S/F Factor 0,01dB 0,00dB 0 0,01dB 0,00dB 0 0 0,00dB 0 0 0,00dB 0 0 0,00dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	O) VE4MA (VE4MA	T (Super) (Super) ease Videb 19,51* arrent Moon NA NA NA NA NA NA Son	Boon Width 4.37 ° Quis 85 Moo Phat Illum 4th P Ang Moon 1	T Linear Po 17. n Data se 0.88 12,9 % Duarter gle 316* Serp K	Bd Disk Gui .16 dBd	33,65 dBi Circular Pol. 19,31 dB Save Data Get Data ✓ Default

OZ9AAR 2024-11-06

Conclusions so far.

When comparing the predicted results from EMECalc when working Frank NC1I, the difference does seem to be as expected (+/-).

Another VERY important thing is according to Frank and his vast experience on 70 cm (digital) EME, he thinks that my station performs as he would expect. Frank has worked a very large number of stations and has a VERY good knowledge of "how a 4 yagi station should perform".


One thing that is still to be figured out, is why there is no difference in measured sun noise when the IC-9700 has its internal preamp switched on or off. Only with the internal preamp switched off, I measure what EMECalc has predicted. When switching the internal preamp on, I measure no difference in sun noise (there should in one of the sun noise measurements be around 3 dB increase in sun noise with the internal preamp on). The lack of "extra sun noise" also influences the signal strength I receive stations (and echoes) with.

So, I'm nowhere near finished with this, I will do further tests and measurements in the coming weeks/months and update this document accordingly.

Also, there is a separate problem measuring the sun noise using SpectraVue (and the other tested software tools) when the internal preamp is off, resulting in "too little gain" from LNA to radio (a difference of 2.4 dB compared to using a step attenuator). Only if the internal preamp is on, does SpectraVue measure the same sun noise as using step attenuators does.

In order to gain some understanding, and also have a easy to use tool for calculating cascaded NF/G, prediction of sun noise, measurement of noise etc., I developed a PC application, SimpleCalc that is available from my webpage <u>www.moonbounce.dk/hamradio/simplecalc.html</u>

SimpleCalc lets you do a small subset of the calculations that EMECalc gives you, it allows you to measure and compare the noise level from the radio (somewhat similar to SpectraVue). It also contains a "comment" window where you can record your measurements, comments etc.

